
1 Getting Started with JPA 2.0

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.answerhub.com
http://fusesource.com/fuse/enterprise-integration-patterns/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#170
C

am
el

 E
ss

en
ti

al
 C

o
m

p
o

n
en

ts

CONTENTS INCLUDE:

❱ What is Camel?

❱ Why use Camel?

❱ Configuring Camel Components

❱ Essential Components

❱ Hot Tips and more... By Christian Posta

Camel Essential Components

WHAT IS CAMEL?

Camel is an open-source, lightweight, integration library that allows your
applications to accomplish intelligent routing, message transformation,
and protocol mediation using the established Enterprise Integration
Patterns and out-of-the-box adapters with a highly expressive Domain
Specific Language (Java, XML, or Scala). With Camel you can implement
integration solutions as part of an overarching ESB solution, or as
integration routes deployed to any container such as Tomcat, OSGI
(FuseESB), or even a stand-alone java process.

WHY USE CAMEL?

Camel simplifies systems integrations with an easy-to-use DSL to create
routes that clearly identify the integration intentions and endpoints.
Camel’s out of the box integration components are modeled after the
Enterprise Integration Patterns cataloged in Gregor Hohpe and Bobby
Wolf’s book (http://www.eaipatterns.com). You can use these EIPs
as pre-packaged units, along with any custom processors or external
adapters you may need, to easily assemble otherwise complex routing and
transformation routes.

from(“jms:incomingQueue”)
 .convertBodyTo(String.class)
 .unmarshal(jaxb)
 .process(new Processor() {
 @Override
 public void process(Exchange exchange) throws Exception {
		 Custom Logic If Needed
 }
 })
 .marshal(jaxb)
 .convertBodyTo(String.class)
 .to(“jms:outgoingQueue”);

Camel allows you to integrate with quite a few protocols out of the box
and the community is constantly adding more. Each component is
highly flexible and can be easily configured using Camel’s consistent URI
syntax. This Refcard introduces you to the more popular and widely used
components and their configurations:

•	 Log
•	 JMS/ActiveMQ
•	 CXF
•	 File
•	 SEDA/Direct
•	 Mock

CONFIGURING CAMEL COMPONENTS

All Camel components can be configured with a familiar URI syntax.
Usually, components are specified in the from() clause (beginning of a
route) or the to() clause (typically termination points in the route, but not
always). A component “creates” specific “endpoint” instances. Think of a
component as an “endpoint factory” where an endpoint is the actual object
listening for a message (in the “from” scenario) or sending a message (in
the “to” scenario).

An endpoint URI usually has the form:

<component:><//endpoint-local-name><?config=value&config=value>

The component is listed first, followed by some local name specific to the
endpoint, and finally some endpoint-specific configuration

Example:

jms:test-queue?preserveMessageQos=true

This URI creates a JMS endpoint that listens to the “test-queue” and sets
the preserveMessageQos option to “true”.

There are over 100 Camel components and each one has configuration
options to finely tune its behavior. See the Camel components list to see if
a component is available for the types of integrations you might need:

http://camel.apache.org/components.html

ESSENTIAL COMPONENTS

Bean Component
Camel implements the Service Activator pattern (from the EIPs) which
allows you to plug a service into your route through a thin layer that’s
responsible for mediating between the messaging system (or integration
route) and the service. Camel implements the Service Activator with its
“bean” component and allows you to bind to and invoke POJO beans within
your route.

Basic usage
Define your bean in the Camel registry (usually the spring context if you are
instantiating from a Spring application context).

<bean id=”beanName” class=”com.some.class.ClassName”> ... </bean>

Then from your route, you can invoke a method on the bean:

from(“direct:incoming”).beanRef(“beanName”, “methodName”)

Brought to you by:

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://camel.apache.org/components.html
http://fusesource.com/fuse/enterprise-integration-patterns/
http://fusesource.com/

3 Camel Essential Components

DZone, Inc. | www.dzone.com

Instead of relying on the registry to have the bean, you could just let Camel
instantiate and manage the bean by supplying the class:

from(“direct:incoming”).bean(InvokeCustomLogicService.class, “methodName”)

How is a method chosen?
You don’t always have to supply an explicit method name, but if you do it
makes it easier on both Camel and reading the route. If you don’t supply an
explicit method name, Camel will do its best to resolve the correct method
using the following rules:

•	 Is there a header with the key “CamelBeanMethodName” with a
non-null value?

•	 If there is only a single method, Camel will try to use that.

•	 If there are multiple methods, camel will try to select one that has
only one parameter.

•	 If there is an @Handler annotation, Camel will use that one.

•	 Lastly, Camel will try to match a method’s parameters by type to the
incoming message body.

How does Camel bind parameters?
Camel will automatically try to bind the first parameter to the body of the
incoming message. Otherwise, if you have parameters of these types, they
will automatically be bound, regardless of order:

•	 CamelContext – Use when you need access to the full context,
components defined in the context, or to create objects that require
the context.

•	 Registry – The registry is the object that holds all of the beans that
might be used in a CamelContext; usually the Spring BeanFactory/
ApplicationFactory (but not always).

•	 Exchange – Contains headers, body, properties, and overall state for
processing a message unit including a reply.

•	 Message – The incoming message.

•	 TypeConverter – Part of Camel’s type conversion internals; can be
used to explicitly convert types.

You can also use annotations to specifically bind certain parts of the
Exchange to parameters in your methods. See the Camel documentation
(http://camel.apache.org/parameter-binding-annotations.html) for more.

Further Reading
For more information on the bean component, see
http://camel.apache.org/bean.html

Log Component
We always advise using logging in your routes to make it clear what steps
in the processing have completed successfully. One way to do that is
through the Log Component. The logging mechanism that’s used is slf4j.
Slf4j allows you to configure different types of logger implementations
including log4j, logback, and the JDK’s built in logging.

Logging
To log an exchange at debug level:

from(“direct:start”).to(“log:com.fusesource.examples?level=DEBUG”)

This will output the exchange type (InOnly/InOut) and the body of the In
message. You some control over what is logged; for example, to see the
headers along with the exchange:

from(“direct:start”)
 .to(“log:com.fusesource.examples?showHeaders=true”)

To make the Exchange logging easier to read, consider enabling multiline
printing:

from(“direct:start”) .to(“log:com.fusesource.examples?showHeaders=true&mult
iline=true”)

For logging streams, you must determine whether you want to cache the
stream first before logging it. Streams are read-once entities, and if you
don’t cache them, they won’t be available to processors further down the
chain. To cache streams and log them:

from(“direct:start”).streamCaching() .to(“log:com.fusesource.examples?showHe
aders=true&showStreams=true”)

Formatting
You can add configurations to fine-tune exactly what’s logged. Note
that formatting options don’t apply to groups when using groupSize,
groupInterval, etc.

Option Description

showAll Turns all options on, such as headers, body, out,
stackTrace, etc.

showExchangeId Prints out the exchange ID.

showHeaders Shows all headers for in the in message.

showBodyType Shows the Java type for the body.

showBody Shows the actual contents of the body.

showOut Shows the out message.

showException If there’s an exception in the exchange, shows the
exception. Doesn’t show the full stacktrace.

showStackTrace Prints the stacktrace from the exception.

multiline Logs each part of the exchange and its details on
separate lines for better readability.

maxChars The maximum number of characters logged per line.

Further Reading
For more information on the log component, see
http://camel.apache.org/log.html
 JMS and ActiveMQ Component
The Camel JMS component allows you to write Camel routes with
endpoints producing to or consuming from a JMS provider. Most
commonly, JMS and associated routes are used for asynchronous inOnly
style messaging. However, Camel-JMS understands request-reply or
inOut style messaging and uses temporary queues to implement under the
covers. Use the activemq-camel component for JMS endpoints that rely on
an ActiveMQ provider as it provides some simple optimizations.

Consume from a queue
Note that you can specify “jms:queue:incomingOrders” but “queue” is
default, so it can be left off:

from(“jms:incomingOrders”)
.process(<some processing>).to(“jms:inventoryCheck”);

Consume from a topic

from(“jms:topic:incomingOrders”)
.process(<some processing>).to(“jms:inventoryCheck”);

Set up pooled resources
JMS resources are often expensive to create. Connections, Sessions,
Producers, Consumers should be cached where it makes sense, and
setting up the appropriate caching starts with a pooled connection
factory. If you’re using ActiveMQ, you can use the org.apache.activemq.
pool.PooledConnectionFactory. Alternatively for general purpose JMS
connection pooling, you can use the Spring’s CachingConnectionFactory.
See the documentation for using the CachingConnectionFactory.

When using ActiveMQ::

<bean id=”connectionFactory” class=”org.apache.activemq.
ActiveMQConnectionFactory”>
 <property name=”brokerURL” value=”tcp://localhost:61616” />
</bean>

<bean id=”jmsPooledConnectionFactory” class=”org.apache.activemq.pool.
PooledConnectionFactory”>
 <property name=”connectionFactory” ref=”connectionFactory”>
 </property>
</bean>

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://camel.apache.org/bean.html
http://camel.apache.org/log.html

4 Camel Essential Components

DZone, Inc. | www.dzone.com

Request/Reply
By default, Camel will use a Message Exchange Pattern of InOnly when
dealing with JMS. However, it will be changed to InOut if there is a
JMSReplyTo header or if explicitly set:

from(“direct:incoming”).inOut().to(“jms:outgoingOrders”).process(process the
jms response here and continue your route)

In the previous example, the MEP was set to InOut which means before
sending to the outgoingOrders queue, Camel will create a temporary
destination, listen to it, and set the JMSReplyTo header to the temporary
destination before it sends the JMS message. Some other consumer will
need to listen to outgoingOrders queue and send a reply to the destination
named in the JMSReplyTo header. The response received over the
temporary destination will be used in further processing in the route. Camel
will listen for a default 20s on the temporary destination before it times out.
If you prefer to use named queues instead of temporary ones, you can set
the replyTo configuration option:

from(“direct:incoming”).inOut().to(“jms:outgoingOrders?replyTo=outgoingOrdersR
eply”).process(process the jms response here and continue your route)

Transactions
To use transactions with Camel-JMS, you should set up a pooled
connection factory, a transaction manager, and configure the Camel-JMS
configuration in a JMSConfiguration object:

<!-- JmsConfiguration object -->
<bean id=”jmsConfig” class=”org.apache.camel.component.jms.JmsConfiguration” >
<property name=”connectionFactory” ref=”jmsPooledConnectionFactory”
/>
 <property name=”transacted” value=”true” />
 <property name=”transactionManager” ref=”jmsTransactionManager” />
 <property name=”cacheLevelName” value=”CACHE_CONSUMER” />
</bean>

<!-- Spring Transaction Manager -->
<bean id=”jmsTransactionManager” class=”org.springframework.jms.connection.
JmsTransactionManager”>
<property name=”connectionFactory” ref=”jmsPo
oledConnectionFactory” />
</bean>

<!-- Set up Pooled Connection Factory -->
<bean id=”jmsPooledConnectionFactory” class=”org.apache.activemq.pool.
PooledConnectionFactory”>
 <property name=”connectionFactory”>
 <bean class=”org.apache.activemq.ActiveMQConnectionFactory”>
 <property name=”brokerURL” value=”tcp://localhost:61616” />
 </bean>
 </property>
</bean>

Make sure to set the cache level to CACHE_CONSUMER so that your
consumers, sessions, and connections are cached between messages.

Updated for Camel 2.10, you can now use “local” transactions with the
Camel-JMS consumer (you don’t have to specify an external transaction
manager):

<bean id=”jmsConfig” class=”org.apache.camel.component.jms.JmsConfiguration” >
 	 <property name=”connectionFactory” ref=”jmsPooledConnectionFacto
ry” />
 	 <property name=”transacted” value=”true” />
 	 <property name=”cacheLevelName” value=”CACHE_CONSUMER” />
</bean>

Common configuration options:

Option Default Description

concurrent
Consumers

1 Specifies the number of
consumers to create to listen
on the destination.

disableReplyTo false Sets this endpoint to not do
inOut messaging.

durableSubscription
Name

null Explicitly sets the name of
a durable subscription (per
JMS, must be used with
clientId).

clientId null JMS client id for this
endpoint. Must be unique.

Option Default Description

replyTo null Specifies the name of a
destination to be included
as a JMSReplyTo header on
outgoing messages.

selector null JMS selector to specify a
predicate for what messages
the broker should deliver to
this endpoint consumer.

timeToLive null Time to live (in milliseconds)
for the message as it travels
through a broker (possible
network of brokers).

transacted false Specifies whether to do send
and receives in a transaction.

acknowledgement
ModeName

AUTO_
ACKNOWLEDGE

JMS acknowledgement mode.

asyncConsumer false Whether to process a
message from a destination
asynchronously. By default
this is false.

cacheLevelName CACHE_AUTO Caches consumers, sessions,
and connections. For
example, CACHE_AUTO, and
CACHE_CONSUMER.

Further Reading
For more information on the jms component, see
http://camel.apache.org/jms.html

CXF Component
When you want to expose or consume a SOAP or REST style web service
for use in an integration route. sometimes a solution you're working on
requires a web-service endpoint to kick off a larger process, or enrich data
before calling another web service, or just act as a proxy to another service.
Camel works nicely with CXF to allow you to configure a web-service
endpoint that hooks into and leverages the power of Camel's routing and
mediation engine.

You can use Camel-CXF as a consumer (from() clause) which internally
starts up a Jetty server to publish the web service. It can also be used as
a producer, which will send SOAP or REST requests. You can alternatively
configure your endpoint to deploy into an existing servlet container instead
of relying on the built-in Jetty server.

JAX-WS (SOAP)
Using the JAX-WS front end for CXF with Camel requires you to set up your
contract (WSDL) or Java classes first and follow the correct wsdl2java or
java annotations to describe your web service. Once you’ve done this, you
can use Camel to hook the endpoint into a route.

Configuration
As a bean (easier to read in the DSL)

To configure the JAX-WS component, specify a <cxfEndpoint> with an ID
attribute that can be later referenced by a Camel route:

<cxf:cxfEndpoint id=”helloWorld”
 wsdlURL=”wsdl/HelloWorld.wsdl”
 serviceClass=”org.apache.helloworld.HelloWorld”
 address=”http://localhost:9090/helloworld” >
</cxf:cxfEndpoint>

Note that for this configuration, you’ll need this namespace in your spring
application context:

http://camel.apache.org/schema/cxf
http://camel.apache.org/schema/cxf/camel-cxf.xsd

Then, in your Camel route, you can refer to the CXF endpoint with:

from(“cxf:bean:helloWorld”).log(“This is what was said: ${body}”).
transform(constant(“Hello to you good sir!”));

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://camel.apache.org/jms.html

5 Camel Essential Components

DZone, Inc. | www.dzone.com

With the URI (more convenient, not as easy to read in the DSL)

You can leave out the bean config in the registry (spring XML) altogether
and configure options directly on the endpoint:

from(“cxf://http://localhost:9090/helloworld?serviceClass=org.apache.
helloworld.HelloWorld&wsdlURL=wsdl/HelloWorld.wsdl&dataFormat=MESSAGE”)

In this example, org.apache.helloworld.HelloWorld is the SEI (Service
Endpoint Interface). Note, there is no *Impl class that implements the SEI,
as camel takes care of that.

DataFormat
Camel allows you to work with the SOAP message in three different
formats:

•	 POJO (default) – a list of Java objects that represent the parameters
to the service being called

•	 MESSAGE – Raw message, no SOAP processing
•	 PAYLOAD – just deal with the SOAP body of the message

JAX-RS (REST)
Just like with JAX-WS, you’ll need to set up your Java classes with the
correct JAX-RS annotations and use Camel to expose the REST endpoint

Configuration
As a bean

Note that for this configuration, you’ll need this namespace in your spring
application context:

http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-
cxf.xsd

<cxf:rsServer id=”rsServer” address=”http://localhost:9090/route”
serviceClass=”com.fusesource.samples.CustomerServiceResource”>

Then, within your route (just like the bean for the JAX-WS web service) you
can refer to the bean like this:

from(“cxfrs:bean:rsServer”)

With the URI

from(“cxfrs://http://localhost:9090/route?resourceClasses=com.fusesource.
samples.CustomerServiceResource”)

Further Reading
For more information on the CXF component, see
http://camel.apache.org/cxf.html

For more about Camel, CXF, and JAX-RS see:
http://www.christianposta.com/blog/?p=229

File Component
When reading or writing files (CSV, XML, fixed-format, for example) to or
from the file system, use the Camel File component. File-based integrations
are fairly common with legacy applications but can be tedious to interact
with. With a file consumer endpoint, you can consume files from the file
system and work with them as exchanges in your camel route. Conversely,
you can also persist the content of your exchanges to disk.

Read Files
When used in a “from” DSL clause, the file component will be used in
“consumer” mode or “read”.

from(“file:/location/of/files?configs”).log(“${body}”)

Common Configuration Options for Reading Files

Option Default Description

delay 500ms Sets how long (in milliseconds) to
wait before polling the file system for
the next file.

Option Default Description

delete false Sets whether to delete the file after it
has been processed.

doneFileName null Names of files that must exist before
Camel starts processing files from
the folder.

exclude null Regex for file patterns to ignore.

filter null A custom filter class used to filter
out files/folders you don’t want to
process (specify as a bean name:
#beanName).

idempotent false Skips already-processed files
following the Idempotent consumer
pattern.

include null Regex for file patterns to include.

move .camel Sets the default place to move files
after they’ve been processed.

noop false If true, the file is not moved or deleted
after it has been processed.

readLock markerFile Camel will only process files that it
can get a read-lock for. Specifies a
strategy for how to determine whether
it has read-lock access.

readLock
Timeout

10000ms Sets the timeout i(n milliseconds)
for how long to wait to acquire a
read-lock.

recursive false Recurs through sub-directories as
well.

Things to Watch Out For

•	 Locking of files that are being processed (on reads) until route is
complete (by default).

	
•	 Will ignore files that start with “.”
	
•	 By default, will move processed files to “.camel” directory.
	
•	 Moving/deleting files will happen after routing.

Write Files

from(<endpoint>).to(“file:/location/of/files?fileName=<filename>”)

Common Configuration Options for Writing Files

Option Description

doneFileName Name of file that must exist before Camel starts
processing files from the folder.

fileExist What to do if a file exists: override, append, ignore,
or fail.

fileName Name of file to be written.

tempFileName A temporary name given to the file as it’s being
written. Will change to real name when writing is
finished.

Big Files
Sometimes you need to process files that are too large to fit into memory,
or would be too large to process efficiently if loaded into memory.
A common approach to dealing with such files using the Camel-file
component is to stream them and process them in chunks. Generally, the
files are structured in such a way that it makes sense to process them in
chunks and we can leverage the power of camel’s EIP processors to “split”
a file into those chunks. Here’s an example route:

from(“file:/location/of/files”).split(body().tokenize(“\n”)).streaming().
log(“${body}”).end()

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://camel.apache.org/cxf.html
http://www.christianposta.com/blog/?p=229

6 Camel Essential Components

DZone, Inc. | www.dzone.com

This route splits on newlines in the file, streaming and processing one line
at a time.

For more information on splitting large files, see
http://www.davsclaus.com/2011/11/splitting-big-xml-files-with-apache.
html

Headers
Headers are automatically inserted (consumer) for use in your routes or
can be set in your route and used by the file component (producer). Here
are some of the headers that are set automatically by the file consumer
endpoint:

•	 CameFileName - Name of the file consumed as a relative location
with the offset from the directory configured in the endpoint.

	
•	 CamelFileNameOnly - File name with no location offset.
	
•	 CamelFileAbsolute - A Boolean that specifies whether the path is

absolute or not.
	
•	 CamelFileAbsolutePath - Will be the absolute path if the

CamelFileAbsolute header is true.
	
•	 CamelFilePath - Starting directory + relative filename.
	
•	 CamelFileRelativePath - Just the relative path.
	
•	 CamelFileParent - Just the parent path.
	
•	 CamelFileLength - Length of the file.
	
•	 CamelFileLastModified - Date of the last modified timestamp.

Headers that, if set, will be used by the file producer endpoint:

•	 CamelFileName - Name of the file to write to the output directory
(usually an expression).

	
•	 CamelFileNameProduced - The actual filename produced

(absolute file path).

Further Reading
For more information on the file component, see
http://camel.apache.org/file2.html

SEDA and Direct Component
You can still use messaging as a means of communicating with or between
your routes without having to use an external messaging broker. Camel
allows you to do in-memory messaging via synchronous or asynchronous
queues. Use the “direct” component for synchronous processing and use
the “seda” for asynchronous, “staged,” event-driven processing.

Direct
Use the direct component to break up routes using synchronous
messaging:

from(“direct:channelName”).process(<process something>).
to(“direct:outgoingChannel”);
from(“direct:outgoingChannel”).transform(<transform something>).
to(“jms:outgoingOrders”)

SEDA
SEDA endpoints and their associated routes will be run in separate threads
and process exchanges asynchronously. Although the pattern of usage is
similar to the “direct” component, the semantics are quite different.

from(“<any component>”).choice().when(header(“accountType”).
endsWith(“Consumer”)).to(“seda:consumerAccounts”)

 .when(header(“accountType”).endsWith(“Business”)).
to(“seda:businessAccounts”)

from(“seda:consumerAccounts”).process(<process logic>)

from(“seda:businessAccounts”).process(<process logic>)

You can set up the SEDA endpoint to use multiple threads to do its
processing by adding the concurrentConsumers configuration:

from(“seda:consumerAccounts?concurrentConsumers=20”).process(<process logic>)

Keep in mind that using SEDA (or any asynchronous endpoint) will behave
differently in a transaction, i.e., the consumers of the SEDA queue will not
participate in the transaction as they are in different threads.

Common configuration options
The “direct” component does not have any configuration options.

SEDA commonly used options:

Option Default Description

size Unbounded Max capacity of the in-
memory queue.

concurrentConsumers 1 The number of concurrent
threads that can process
exchanges.

multipleConsumers false Determines whether multiple
consumers are allowed.

blockWhenFull false Blocks a thread that tries to
write to a full SEDA queue
instead of throwing an
exception.

Further Reading
For more information on the direct and SEDA component, see
http://camel.apache.org/direct.html and
http://camel.apache.org/seda.html respectively

Mock Component
Testing your routes is an important aspect in integration development and
Camel makes it easier with the mock component. The component can be
used in your JUnit or TestNG tests. You can declare a set of expectations
on a mock such as how many messages were processed, or that certain
headers must be present at an endpoint, and then run your route. At the
completion of the route, you can verify that the intended expectations were
met and fail the test if they were not.

Mocks
You start by obtaining the mock endpoint from the route:

MockEndpoint mock = context.getEndpoint(“mock:outgoing”,
MockEndpoint.class);

Next, you declare expectations. Methods that declare expectations start
with “expect”, for example:

mock.expectedMessageCount(1)

Then you run your route.
Finally, you assert that the declared expectations were met:

mock.assertIsSatisfied()

Expectation Methods:

	 •	 expectedMessageCount(int)
	
	 •	 expectedMinimumMessageCount(int)
	
	 •	 expectedBodiesReceived()
	
	 •	 expectedHeadersReceived()
	
	 •	 expectsAscending(Expression)
	
	 •	 expectsDescending(Expression)
	
	 •	 expectsNoDuplicate(Expression)

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.davsclaus.com/2011/11/splitting-big-xml-files-with-apache.html
http://www.davsclaus.com/2011/11/splitting-big-xml-files-with-apache.html
http://camel.apache.org/file2.html
http://camel.apache.org/direct.html
http://camel.apache.org/seda.html

7 Camel Essential Components

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright � 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer's dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

AssertionMethods:
	
	 •	 assertIsSatisfied()
	
	 •	 assertIsNotSatisfied()	

Mocking existing endpoints
Sometimes, you’ll have routes with live endpoints that you cannot change
(or don’t want to change) for testing. For such routes, you can insert mocks
where the live mocks are to do some testing.

RouteDefinition route = context.getRouteDefinition(“advice”);

route.adviceWith(context, new AdviceWithRouteBuilder() {
 @Override
 public void configure() throws Exception {
 mockEndpoints(<pattern>);
 }
});

<pattern> allows you to specify which endpoints to mock. For example, to
mock out only the JMS components, you would do mockEndpoints(“jms*”).
To mock all endpoints, leave off the pattern completely.

Note that inserting mocks at the location of the endpoints does not replace
the endpoints, i.e., the live endpoints will still exist. Updated for Camel 2.10,
you can now skip sending the exchange to the live endpoint:

RouteDefinition route = context.getRouteDefinition(“advice”);

route.adviceWith(context, new AdviceWithRouteBuilder() {
 @Override
 public void configure() throws Exception {
 mockEndpointsAndSkip(<pattern>);
 }
});

Further Reading
For more information on the mock component, see
http://camel.apache.org/mock.html

Based in Phoenix, AZ, I’m a Senior Consultant and
Architect at Red Hat and I specialize in messaging-
based enterprise integrations. I’m passionate about
software development, love solving tough technical
problems, and enjoy learning new languages and
programing paradigms. Favorite languages include
Python and Scala, but spend a lot of time writing

Java. I am a committer on Apache ActiveMQ and Apache Apollo projects
and frequently blog at http://www.christianposta.com/blog as well as
tweet about interesting technology @christianposta.

Camel in Action is a Camel tutorial full of small examples
showing how to work with the integration patterns. It starts
with core concepts like sending, receiving, routing, and
transforming data. It then shows you the entire lifecycle and
goes in depth on how to test, deal with errors, scale, deploy,
and even monitor your app— details you can find only in the
Camel code itself.

Buy Here.

Mongo DB
JSON
Cypher
Object-Oriented js

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://camel.apache.org/mock.html
http://www.christianposta.com/blog
https://twitter.com/christianposta
http://www.amazon.com/Camel-Action-Claus-Ibsen/dp/1935182366
http://www.amazon.com/Camel-Action-Claus-Ibsen/dp/1935182366

