
© DZone, Inc. | dzone.com

AngularJS Essentials
By Gil Fink

» What is AngularJS?

» AngularJS Building Blocks

» Setting up the Environment

» AngularJS Bootstrap

» Modules

» Controllers...and more!CON

T

EN

T
S

Ja
v

a
 E

n
t

e
r

p
r

is
e

 E
d

it
io

n
 7

Wh at is A ngul a r JS?

AngularJS is a very popular MVW (Model/View/Whatever)
framework maintained by Google. AngularJS enables web
developers to impose MVC structures on their client-side
code and to build dynamic web applications more easily.

AngularJS introduces component-based architecture. It also
includes a variety of conventions that developers should
know and use, which will be presented in this Refcard.
AngularJS includes a wide range of features that help to build
Single Page Applications (SPAs) faster and is considered a
“one-stop shop” for creating SPAs. Another good aspect of
AngularJS is that it was written with testability in mind.

You will learn that AngularJS is expressive, readable,
extensible, and quick to develop. All of these qualities
make AngularJS one of the best JavaScript frameworks for
application development

In this Refcard, you will get to know the essential parts of
AngularJS. The Refcard will also try to help you speed up your
development process when you use AngularJS.

A ngul a r JS Building Blocks

AngularJS includes a few building blocks that you should
know and understand:

Version Implementations

Modules
Logical containers for different parts of
AngularJS objects

Controllers
A constructor functions that are used to hold
scopes and expose behaviors that views can
use

Scopes Objects that reference the application model

Views
HTML that presents the models and
interacts with the user

Templates
HTML that contains AngularJS-specific
elements and attributes

Services
Objects that enable you to organize and
share code in an AngularJS application

Filters
Transform the model data to an appropriate
representation in the view

Directives

Reusable web components that tell the
AngularJS HTML compiler how to render
them and how the components behave. Can
help you enrich the existing HTML elements
or create your own custom ones.

Routing
A module that maps URLs to application
states / handles state and view switching

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 R
ef

ca
rd

z.
co

m
206

a
n

g
u

la
r

 j
s

 e
s

s
e

n
t

ia
ls

Dependency
Injection

Design pattern that deals with how to
inject dependencies to a dependent object.
AngularJS uses this pattern and enables you
to inject dependencies in a declarative way.

The following diagram shows how these building blocks work
together to build the AngularJS ecosystem:

Let’s explore how some of these parts relate to the MVC
design pattern:

http://www.dzone.com?refcardz
http://www.refcardz.com
http://dzone.com/page/research

© DZone, Inc. | dzone.com

2 angular js essentials

The Model
The model is the data structure that holds some business data. It
will usually reside from the server side using a REST API or from
a service. The model is exposed to the AngularJS view using the
$scope object.

The View
The view is the HTML part that presents the data structure and
enables user interactions. The view binds to a model using the
$scope object. It can call controller functions through the $scope
object as well. It uses filters to transform the model data to an
appropriate representation. It also uses directives as reusable web
components and for DOM manipulation.

The Controller
The controller performs all the business logic and orchestrates
operations. It is responsible for initializing the $scope, can
interact with AngularJS services, and exposes functions to the
view using the $scope object. The controller is also responsible
for updating the model based on user’s view interactions.

Setti ng up the Environ m ent

The first thing that you will need to do is set up the environment.
AngularJS can be downloaded from www.angularjs.org and
included in your web page or it can be included directly from the
Google Content Delivery Network (CDN):

<script src=”https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.9/angular.min.js”></script>

Another option is to install AngularJS using your favorite package
manager and then include its script. For example, you can use
Bower to install AngularJS using the following syntax:

bower install angular

A third option is to clone the GitHub angular-seed repository.
Angular-seed is an application skeleton for the AngularJS web
application.

Once AngularJS is installed in your web application, you can start
working with it.

The ng-app Directive
One of the most important AngularJS directives is the ng-app
directive. ng-app bootstraps the application, and instructs
AngularJS to load the main module that is given as the directive
parameter. The next code example shows how to setup the ng-
app directive to the myApp module:

<!doctype html>
<html ng-app=”myApp”>
 <head>
 <script src=”https://ajax.googleapis.com/ajax/libs/
angularjs/1.2.9/angular.min.js”></script>
 </head>
 <body>
 <div>
 </div>
 </body>
</html>

A ngul a r JS Bootstr a p

Once the browser loads a web page and it includes the
AngularJS script along with the ng-app directive, AngularJS
is bootstrapping. There are two options for bootstrapping:
automatic bootstrap and manual bootstrap. Let’s explore both of
these options:

Automatic Bootstrap
Three main things happen when AngularJS is automatically
bootstrapping. First, AngularJS creates an injector object, which
will be used later on for dependency injection. Then, AngularJS
creates the root scope, which is the root for all the scopes in the
application. Finally, AngularJS compiles the Document Object
Model (DOM) starting from the ng-app directive, compiling
and processing all the directives and bindings that it finds in the
DOM.

The following diagram shows the process:

Manual Bootstrap
Sometimes you want to perform operations before AngularJS
starts. These operations can be configurations, retrieving relevant
data or anything else you might think about. AngularJS enables
you to manual bootstrap the application. You will need to remove
the ng-app directive from the HTML and use the angular.
bootstrap function instead. Pay attention, as you will need to
declare your modules before using them in the angular.bootstrap
function. Manual AngularJS bootstrapping is not so common.
Now that we know about how to start an AngularJS application,
let’s explore the first AngularJS building block – modules.

modules

What is a Module?
AngularJS modules are logical containers for different parts of
AngularJS objects. AngularJS applications are typically created
with one or more modules. Modules can have dependencies on
other modules. These dependencies are resolved automatically by
AngularJS when a module is loaded into memory.

http://www.dzone.com?refcardz
http://www.angularjs.org

© DZone, Inc. | dzone.com

3 angular js essentials

Creating a Module
You create modules using the angular.module function. Each
created module should have a unique name that is passed as
the first argument to the angular.module function. The second
angular.module argument is an array of dependencies, which can
have zero to many dependencies. Here is an example of using the
angular.module function to declare a myApp module, which is
dependent on a storageService:

angular.module(‘myApp’, [‘storageService’]);

Configuring a Module
You can add module configuration using the config function once
you declare a module. The configuration will get executed when
the module is loading. You can inject providers or constants
(which will be discussed later in the Refcard) to the configuration
block you are writing. Here is an example of a call for the config
function:

angular.module(‘myApp’, [‘storageService’])
 .config(function ($provide, $filterProvider) {
 $provide.value(‘myValue’, 1);
 $filterProvider.register(‘myFilter’, ...);
 });

In the previous code, there are two injectable objects - $provide
and $filterProvider. In the config function body, we create a
constant value called myValue, which is set to 1. We also register
a filter called myFilter into the $filterProvider.

Another option to interact with an AngularJS module execution
is to use the run function. The run function runs after all the
modules have been loaded. The function is used to literally run
the AngularJS application. You can inject services and constants
into the run function callback. The following code shows how to
use the run function:

angular.module(‘myApp’, [‘storageService’])
 .run(function (someInstance) {
 someInstance.doSomething();
 });

Now that we understand how to create and use modules, let’s
explore the AngularJS dependency injection (DI) mechanism.

AngularJS Dependency Injection
Each AngularJS application includes an $injector object. The
$injector is responsible for dependency management and for
dependency lookups. Here is a diagram that shows how DI works
in AngularJS:

Let’s analyze what is going on in the diagram. Once the root
module is created, AngularJS will create a new $injector object.
While the application is running, a lot of objects such as
controllers, services, and filters are registered in the $injector
container. Later on, if an object has a dependency, AngularJS
will use the $injector object to search it. If an instance of the
dependency is available, it is returned by the $injector. If there is
no instance of the dependency, a new object is created using the
$injector instance factory. The new object is returned and also
stored in the instance cache.

Some of the main AngularJS objects such as modules, controllers,
and services can declare that they need a dependency. In order to
do that, you need to add function arguments with the exact name
of the dependency. That means that if you have an object named
obj and you want to inject it, you will have to have a function
argument in the AngularJS object with the same name. Here is a
controller example that declares it needs a $scope injected object:

var myApp = angular.module(‘myApp’,[]);
myApp.controller(‘MyController ‘, function($scope) {
});

You can see the use of explicit DI syntax [‘$scope’,
function($scope) {}] which helps to avoid minification issues.
This is the preferred way to use DI in AngularJS, and in the code
example we use it to create a controller. Speaking of controllers,
let’s explore what these AngularJS objects are.

Controllers

What is a Controller?
AngularJS controllers are just JavaScript constructor functions
that are used to hold scopes and to expose behaviors that views
can use. You can think about controllers as the logic behind the
view. Each controller has a new child scope that is available as the
$scope argument in the constructor function. When a controller
is created during runtime, the $injector will inject the $scope
argument. Controllers add properties and functions to the $scope.

Creating a Controller
In order to create a controller, all you need to do is to declare
a constructor function. The following code shows a simple
controller:

var myApp = angular.module(‘myApp’,[]);
myApp.controller(‘MyController’, [‘$scope’,
function($scope) {
}]);

The way to wire a controller constructor function to a view is
using the ng-controller directive:

<div ng-controller=”MyController”>
</div>

 A few notes about controller best practices:

•• Controllers should contain only business logic that relates to
the view that they are bound to.

http://www.dzone.com?refcardz

© DZone, Inc. | dzone.com

4 angular js essentials

•• Business logic that isn’t related to the controller bound view
should be injected into controllers as services.

•• Don’t use controllers for DOM manipulation, formatting, or
filtering. We will discuss the ways to do those operations later
in the Refcard.

Now that you are familiar with controllers, let’s talk about scopes.

scopes
What is a scope?
Scopes are objects that include properties and the functions set by
controllers that a view can later use. You can think about scopes
as the glue between a controller and a single view.

Once a controller is attached to a view using the ng-controller
directive, all the scope properties and functions are data bound
to the view, and it can use them. Changes to scope properties
are reflected in the bounded view and user interactions can also
change the bound properties.

What is the digest cycle?
The digest cycle in AngularJS is code that runs in intervals and
its main idea is to enable data binding. Its purpose is to observe
model mutations (using $watch API) and to propagate any model
changes (using $apply API).

The next diagram shows what the digest cycle in AngularJS looks
like:

Using Scopes in Code
AngularJS runtime injects a scope object into a controller, and
then the controller can set the $scope with properties and
behaviors. The following example shows how to add a property
called message and a function called myFunc to a scope object:

var myApp = angular.module(‘myApp’,[]);
myApp.controller(‘MyController ‘, function($scope) {
 $scope.message = ‘hello’;
 $scope.myFunc = function() {
 // do something
 }
});

You can also put full model objects inside scope properties that
can later be used by a view.

The $rootScope
All AngularJS scopes inherit their functionality from the
$rootScope. Every AngularJS application has a single $rootScope.
The $rootScope includes several utility functions that you can use
which are also available on its child scopes such as $new, $watch,
and $destroy. You can find more details about these functions in
the AngularJS documentation.

Views

A view is dynamic HTML that presents models and interacts with
the user. AngularJS views can be bound to a controller using the
ng-controller directive. Once a binding is set, you can use scope
properties and functions in the view. In order to harness the full
potential of views, you should understand two AngularJS concepts
that relate to views: templates and expressions.

templates
A template is a declarative specification that contains HTML
parts. It also contains AngularJS specific elements and attributes
that are called directives and AngularJS expressions. The
directives “explain” to AngularJS how to transform the template
into a dynamic view. The expressions are placeholders that are
used for data binding. The following example shows a template:

<div ng-controller=”MyController”>
	 <input ng-model=”message”>
	 <button ng-click=”changeMessage()”>{{btnTe
xt}}</button>
</div>

Expressions

In the previous template example you can see that we used curly
brackets to wrap btnText. This is an example of an expression.
Expressions are JavaScript code used for binding. Expressions
are placed in double curly brackets. When AngularJS processes a
template, it searches for expressions, then parses and evaluates
them. The evaluation of expressions is being done against
the controller scope object. If the scope doesn’t contain the
expression value, AngularJS will not throw an exception. This
behavior enables you to perform lazy binding.

The following code example shows a simple expression that
evaluates to 5:

<div> 3+2={{3+2}} </div>

AngularJS expressions don’t have access to global variables and
can only use scope-exposed functionality. Expressions can’t use
control flow statements except from the ternary operator (a ? b :
c).

In AngularJS 1.3 you can also use expressions for one-time
binding. Any expression that starts with :: will evaluate only once.
The following code example shows you how to use one-time
binding on a message property:

<div>
One-time binding: {{::message}}
</div>

http://www.dzone.com?refcardz

© DZone, Inc. | dzone.com

5 angular js essentials

Services

What is a Service?
Services in AngularJS are singleton objects that are used to
perform a specific task. Services are UI independent, meaning
that they shouldn’t manipulate or use UI elements (this is the
role of view and directives). You can inject services to modules,
controllers, filters, directives, and more.

Creating a Custom Service
There are four options for service creation in AngularJS:

Service
Type Description

value
Use the module’s value function with a given
name and value. The injector will return the
exact value.

factory
Use the module’s factory function with a given
name and a factory function. The injector will
invoke the given function.

service

Use the module’s service function with a given
name and constructor function. The injector will
use the new keyword to create the service single
instance

provider
Use the module’s provider function with a given
name and provider function. The injector will
invoke the provider’s $get function.

Here are usage examples for the first three options:

var myApp = angular.module(‘myApp’,[]);
myApp.value(‘myValue’, ‘a constant value);

myApp.factory(‘myFactory’, function(name) {
 return ‘Hi ‘ + name;
}
myApp.service(‘myFactory’, function(name) {
 return ‘Hi ‘ + name;
}

When you want to use the previous services you will inject them
to a dependent object by their name and use them. For example,
here is a controller that uses the previous services:

myApp.controller(‘myController’, function($scope,
myValue, myFactory) {
 $scope.value = myValue;
 $scope.greet = myFactory;
});

Built-in AngularJS Services
AngularJS comes with several built-in services. Here are the
descriptions of some of them:

Built-in
Service Description

$http

Used for communicating over HTTP with remote
servers. The service receives as argument a
configuration object for configuring the HTTP
request.

$resource

Abstraction on top of $http for interaction
with REST services. Require a dependency on
ngResource module. Exposes functions such as
get, save and delete.

$q
Exposes the ability to create promises (deferred
objects) for cleaner design of asynchronous code.

$log Enable to log messages

$location
Includes the current parsed URL. Changes to
$location are reflected to the browser address bar.

There are many other services such as $animate, $window,
$rootScope, $interval, and $document You can read about those
services in the AngularJS documentation: https://docs.angularjs.
org/api/ng/service.

Filters
What is a Filter?
Filters format an evaluated expression value to an appropriate
representation in the view. When you want to use a filter you just
“pipe” it using the “|” sign to the expression like in the following
code example:

{{ message | filter }}

For example, if you want to use a currency filter with a number
value you just state the name of the filter:

{{ 5 | currency }}

The output of the expression will be 5$.

Filters can have arguments using the semicolon sign, and they
can be chainable. On the other hand, filters shouldn’t depend on
global state and should be stateless.

Creating a Custom Filter
You can create your custom filters in two ways: using
the module’s filter function or registering a filter in the
$filterProvider service. The first argument that a filter receives in
its callback function is the input value. All the other arguments
are considered additional arguments, which can be used by the
filter function.

The following example shows how to register a filter that turns
any string to its upper case representation:

var myApp = angular.module(‘myApp’,[]);
myApp.filter(‘uppercase’, function() {
 return function(str) {
 return (text || ‘’).toUpperCase();
 };
}

http://www.dzone.com?refcardz
https://docs.angularjs.org/api/ng/service
https://docs.angularjs.org/api/ng/service

© DZone, Inc. | dzone.com

6 angular js essentials

Built-in AngularJS Filters
AngularJS comes with a set of built-in filters that you can use.
Here are their descriptions:

Built-in
Filter Description

currency Used to format numbers as currency

date Used to format dates as string

number Used to format numbers as string

json
Converts JavaScript object to its string
representation

lowercase
Transforms the given string into its
lowercase representation

uppercase
Transforms the given string into its
uppercase representation

limitTo
Creates a new array or string according to
the specified number of elements

orderBy
Orders a given array by a given expression
predicate

filter
Selects a subset of items form the given
array

Directives
What is a Directive?
Directives are one of the most powerful features in AngularJS.
Directives are custom HTML elements and attributes that AngularJS
recognizes as part of its ecosystem. Directives allow you to extend
the existing HTML with your own elements or attributes and to add
behavior to existing elements or attributes. You already saw a few of
the AngularJS built-in directives such as ng-app and ng-controller.

When an AngularJS bootstrap runs, the AngularJS’s HTML compiler
($compile) is attaching a specified behavior to DOM elements
according to directives. The process is done in two phases: compile
and link. The compiler is traversing on the DOM and collects all
the directives. The linker combines directives with their scope and
produces a dynamic view.

Creating a Custom Directive
Like controllers, services, and filters, directives are also
registered to modules. In order to register a directive, you will
use the module’s directive function, which receives a directive
name and a factory function. The factory function should return
a directive definition object. The following example will create a
bare directive with the name myDirective:

var myApp = angular.module(‘myApp’,[]);
myApp.directive(‘myDirective’, function() {
 return {
 };
});

The returned directive definition object can include various
configuration options.

Directive
Configur ation Description

restrict

By default directives are restricted to
attributes. Using restrict you can restrict
the directive to A (attribute), E (element),
C (class) and M (comment)

template
Appends a given HTML as the child
element of the element

replace

If set to true will replace the entire
element with a given template (used
with the template or templateUrl
configurations)

templateUrl
A URL for a given template that would be
loaded and appended to the element

scope

By default, directive has the scope of its
parent controller. If Scope is set to {}, an
isolated scope is created for the directive,
You can map and bind parent properties
to an isolated scope using @ (one
directional mapping), = (bidirectional
mapping), and & (executes an expression
in the parent scope)

transclude

If set to true, the directive can wrap
content. In the template of the directive
you need to use the ng-transclude
directive in order to mark the place to
wrap content

link

A function that receives the scope,
directive element, the element attributes
as parameters and controllers. The
function should be used to add event
listeners or to manipulate the DOM

The following code example shows a simple directive declaration:

myApp.directive(‘myDialog’, function() {
 return {
 restrict: ‘EA’,
 scope: {},
 template: ‘<div class=”dialog”>{{message}}</div>’,
 link: function(scope, element, attrs) {
 scope.message = ‘hello’;
 }
 };
});

When you want to use this directive you can write in your HTML:

<my-dialog></my-dialog>

or:

<div my-dialog></div>

Built-in Useful Directives
AngularJS includes many built-in and useful directives that you
can use.

http://www.dzone.com?refcardz

© DZone, Inc. | dzone.com

7 angular js essentials

Built-in
Directive Description

ngModel
Binds an HTML element to a property in
the scope

ngEventName
(replace

EventName with
any DOM event)

These directives enable you to add custom
behavior on the specified event

ngValue

Binds a given expression to a value of an
input. When the input changes the bound
model (which is the ngModel) changes as
well

ngBind
Binds an expression to the text content
of a HTML element. When the expression
changes the text, content changes as well

ngClass
Dynamically sets CSS classes on HTML
elements by evaluating the given
expression

ngInclude
Retrieves an external HTML fragments,
compile it and add it to the DOM

ngRepeat
Collection iterator. In each item in the
collection, the template that is bound to the
directive is instantiated with its own scope

ngShow
Shows or hides an HTML element according
to the evaluated expression

ngSwitch
Enables to create DOM evaluation
conditions like a switch case statement

You can find more built-in directives in the following AngularJS
documentation: https://docs.angularjs.org/api/ng/directive.

A ngul a r JS a nd For ms

AngularJS adds two way binding, state management, and
validation to HTML forms. You can bind HTML input types to
models using the ngModel directive and AngularJS will provide all
the mechanisms.

When AngularJS locates form elements in the DOM, it will make
them available as a property of the scope. The name of the
property will be the name of the form. Each input type in the
form will be a sub-property of the scope form property

Form Validation Directives
AngularJS provides a few built-in validation directives which can
set the form validation $error property. The available directives
are:

Validation
Directive Description

required A required field

min
Validates the value is greater than the
minimum value

max
Validates the value is less than the maximum
value

minlength
Validates the value has length bigger than the
provided minimum

maxlength
Validates the value has length smaller than
the provided maximum

pattern
Validates the value against a given regular
expression

Here is an example of using form validation with AngularJS:

<form name=”myForm”>
 <div>
 <input type=”text” name=”username” ng-
model=”user.name” required/>
 </div>
 <div>
 <input type=”password” name=”password” ng-
model=”user.password” required />
 </div>
 <button ng-click=”login(user)”>
 Login
 </button>
</form>

In this form, the scope will have a property with the name
myForm that will be bound to the form. The myForm property
will include the username and password sub-properties, which
will include references to the input types. If the user name and
password isn’t supplied, the $error of the form will be set to an
error and the form wouldn’t submit.

AngularJS also decorates form elements and input types with CSS
classes. You can use those classes to change the presented style
of an element according to its state. The CSS classes that you can
use are:

•• ng-valid

•• ng-invalid

•• ng-invalid-[validation name]

•• ng-pristine

•	 ng-dirty

Routing

One of the most important mechanisms in Single Page
Applications (SPA) is client-side routing. Client-side routing
enables developers to intercept route changes and instead of
rendering a new page in the server, render a document fragment
in the client and replace a shell element. This is how you move
from one page to another in SPAs. AngularJS provides a routing
feature that can be used to create this behavior to inject views
into an ngView decorated element.

The ngRoute Module
The ngRoute module is a router module for AngularJS (it isn’t
built-in to AngularJS). There are other options (such as ui-
router), which are also very commonly used. In order to use a
module, you will have to reference the angular-route script and
add ngRoute as a dependency of your ngApp module.

<script src=”angular-route.js”></script>
var myApp = angular.module(‘myApp’, [‘ngRoute’]);

In order to register routes, you use the $routeProvider service.
The $routeProvider service provides a when function to register
routes and a default route that is set using the otherwise function.
Each registered route includes a path and a configuration object.

http://www.dzone.com?refcardz

© DZone, Inc. | dzone.com

8 angular js essentials

RECOMMENDED BOOKABOUT THE AUTHOR
Gil Fink is a web development expert, ASP.NET/IIS
Microsoft MVP and the founder ofsparXys. He is currently
consulting for various enterprises and companies, where
he helps to develop web and RIA-based solutions. He
conducts lectures and workshops for individuals and
enterprises who want to specialize in infrastructure and
web development. He is also co-author of several Microsoft
Official Courses (MOCs) and training kits, co-author of
“Pro Single Page Application Development” book (Apress),
the founder of Front-End.IL Meetup and co-organizer of
GDG Rashlatz Meetup. You can read his publications in his
blog: http://blogs.microsoft.co.il/gilf/.

Pro Single Page Application Development walks
you through building a SPA step-by-step. SPA
development comes with its own particular
challenges, including tracking history, user interface
performance, and how to handle search engine
optimization. This book will be your one-stop shop
for creating fluid, modern applications on the web.

Browse Our Collection of 250+ Free Resources, including:
Research Guides: Unbiased insight from leading tech experts

Refcardz: Library of 200+ reference cards covering the latest tech topics

Communities: Share links, author articles, and engage with other tech

experts
JOIN NOW

BUY NOW

© DZone, Inc.

DZone, Inc.
150 Preston Executive Dr.
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

The configuration object includes the following main
configurations:

Route
Configur ation

Option
Description

template/
templateUrl

The path/template string that represents
the template that is going to be attached
to an ngView

controller
The controller that is bound to the
template’s scope

redirectTo
Name of the route to redirect to when you
want to redirect to a different route

Here is an example:

myApp.config(function($routeProvider) {
 $routeProvider
 .when(‘/about’, {
 templateUrl: ‘views/about.html’,
 controller: ‘myController’
 }).when(‘/cart’, {
 templateUrl: ‘views/cart.html’		
 }).otherwise({
 templateUrl: ‘views/home.html’,
 controller: ‘myController’
 });
});

A ddition a l Resources

For further research about AngularJS, explore the following web
sites:

•	 AngularJS web site: https://angularjs.org/

•	 AngularJS Developer Guide: https://docs.angularjs.org/guide

•	 PhoneCat Tutorial App: https://docs.angularjs.org/tutorial

•	 AngularJS official forum: https://groups.google.com/
forum/#!forum/angular

•	 AngularJS official Twitter handle: https://twitter.com/
angularjs

ASP.NET/IIS
ofsparXys
http://blogs.microsoft.co.il/gilf/
http://www.apress.com/9781430266730
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.amazon.com/Pro-Single-Page-Application-Development/dp/1430266732
https://angularjs.org/
https://docs.angularjs.org/guide
https://docs.angularjs.org/tutorial
https://groups.google.com/forum/%23%21forum/angular
https://groups.google.com/forum/%23%21forum/angular
https://twitter.com/angularjs
https://twitter.com/angularjs

